If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-23=10
We move all terms to the left:
x^2-23-(10)=0
We add all the numbers together, and all the variables
x^2-33=0
a = 1; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·1·(-33)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*1}=\frac{0-2\sqrt{33}}{2} =-\frac{2\sqrt{33}}{2} =-\sqrt{33} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*1}=\frac{0+2\sqrt{33}}{2} =\frac{2\sqrt{33}}{2} =\sqrt{33} $
| |10x-5|=|8x+16| | | 9-16x-5-5x=7 | | 20x+26=12x+94 | | x+9/4=7 | | -2x-3x=-3x+14 | | 4-12x=-5x+21 | | -9x+18=81 | | (3u+1)/8=(7u-9)/4+(1) | | 11-5(6b-7)=-49-11b | | 4(4x-5)=40+x | | 10+x=5(.2x+2 | | (1÷4)x=3 | | 20x+26=12x+24 | | 6x-5=108 | | 6x-5=103 | | 4(x+3)=2(4x+8) | | y²+4y=32 | | 16=12x-4 | | 4c-20=40 | | n+5=8n+40 | | p^2-4p=4p(p-1)-3p^2+2 | | 8x+12=7x+3 | | 4(x+1)+2(x-3)=8x+3 | | 5x-26+2x+1+34=AB | | 5x-26+2x+1+34=x | | 4(-3p-6)=8(-2p-8) | | 4x+2+x+18=180 | | 3k+11=7k-1 | | (2x-3)x=30 | | 7x+7=8x+2 | | n-8n=-6-n | | (2x-3)2x=30 |